首页

▼ 算法合集

▼ 加密算法

▼ 凯撒密码

凯撒密码

▼ Hill密码算法

Hill密码算法

▼ 多项式哈希算法

多项式哈希算法

▼ Rail Fence Cipher

Rail Fence Cipher

▼ Graph算法

▼ 关节点

关节点

▼ Bellman-Ford算法

Bellman-Ford算法

▼ 广度优先搜索

广度优先搜索

▼ GraphBridges

桥接模式

▼ 深度优先搜索

深度优先搜索

▼ 检测循环

检测循环

▼ Dijkstra算法

Dijkstra算法

▼ Eulerian Path

欧拉路径

▼ Floyd-Warshall算法

Floyd-Warshall算法

▼ HamiltonianCycle

Hamiltonian Cycle

▼ Kruskal算法

Kruskal算法

▼ Prim算法

Prim算法

▼ 强连通分量

强连通分量

▼ 拓扑排序

拓扑排序

▼ Travelling Salesman Problem

Travelling Salesman

▼ 图像处理算法

▼ Seam Carving算法

内容感知缩放算法

▼ 链表

▼ 反向遍历

反向遍历

▼ GraphTraversal

GraphTraversal

▼ 数学算法

▼ 二进制浮点数

BinaryFloatingPoint

▼ 位操作

位操作算法

▼ 复数

复数

▼ 欧几里得算法

Euclidean Algorithm

▼ Euclidean Distance

欧几里得距离

▼ 阶乘算法

阶乘算法

▼ 快速幂算法

快速幂算法

▼ Fibonacci数列

斐波那契数列

▼ 傅里叶变换

Fourier变换

▼ Horner法

霍纳法则

▼ 整数划分

整数划分

▼ 判断是否为2的幂

判断是否为2的幂

▼ 最小公倍数

最小公倍数

▼ Liu Hui

Liu Hui

▼ 矩阵

Matrix

▼ Pascal三角形

Pascal三角形

▼ Primality Test

素数测试

▼ 质因数

质因数

▼ 弧度计算

弧度计算

▼ 埃拉托色尼筛法

埃拉托色尼筛法

▼ SquareRoot

SquareRoot

▼ MachineLearning

▼ K均值算法

K均值算法

▼ K近邻算法

K近邻算法

▼ 搜索算法

▼ 二分查找算法

二分查找

▼ 插值搜索算法

插值搜索算法

▼ 跳跃搜索算法

跳跃搜索算法

▼ 线性搜索

线性搜索算法

▼ 集合

▼ 笛卡尔积

笛卡尔积

▼ 组合总和

组合总和

▼ 组合算法

组合算法

▼ Fisher-Yates洗牌算法

Fisher-Yates洗牌算法

▼ 背包问题

背包问题

▼ 最长公共子序列

最长公共子序列

▼ 最长递增子序列

最长递增子序列

▼ 最大子数组

最大子数组

▼ 排列组合

排列组合

▼ 幂集

幂集算法

▼ 最短公共超序列

最短公共超序列

▼ Sorting Algorithms

▼ 冒泡排序

冒泡排序

▼ 桶排序算法

桶排序算法

▼ 计数排序算法

计数排序

▼ 堆排序算法

堆排序

▼ 插入排序

插入排序

▼ 归并排序

归并排序

▼ 快速排序算法

快速排序算法

▼ 基数排序

基数排序

▼ 选择排序算法

选择排序算法

▼ 希尔排序

希尔排序

▼ 统计学

▼ 加权随机

加权随机算法

▼ 字符串算法

▼ Hamming距离

Hamming距离

▼ KnuthMorrisPratt算法

Knuth-Morris-Pratt算法

▼ LevenshteinDistance

Levenshtein距离

▼ 最长公共子串

最长公共子串

▼ 回文检测算法

回文检测算法

▼ Rabin-Karp算法

Rabin-Karp算法

▼ 正则表达式匹配

正则表达式匹配

▼ Z算法

Z算法

▼ Tree Data Structure

▼ 广度优先搜索

广度优先搜索

▼ 深度优先搜索

深度优先搜索

▼ 未分类

▼ 最佳买卖股票时机

最佳买卖股票时机

▼ 汉诺塔算法

HanoiTower

▼ 跳跃游戏算法

跳跃游戏

▼ KnightTour

骑士巡逻

▼ N皇后问题

N皇后问题

▼ 雨水收集

雨水收集

▼ 递归楼梯问题

递归楼梯问题

▼ 方阵旋转

方阵旋转

▼ 独特路径

UniquePaths

▼ 数据结构

▼ BloomFilter算法

布隆过滤器

▼ 不相交集数据结构

Disjoint Set

▼ 双向链表

双向链表

▼ Graph

Graph算法

▼ 哈希表

哈希表

▼ Heap数据结构

Heap数据结构

▼ 链表

链表

▼ LRU缓存

LRU缓存

▼ 优先队列

优先队列

▼ 队列

队列

▼ 栈结构

栈结构

▼ Tree Data Structure

树结构

▼ AVL树

AVL树

▼ 二叉搜索树

二叉搜索树

▼ Fenwick树

Fenwick树

▼ 红黑树

红黑树

▼ 线段树

SegmentTree

▼ Trie数据结构

Trie数据结构

LRU 캐시 알고리즘

LRU 캐시 알고리즘 은 사용된 순서대로 아이템을 정리함으로써, 오랜 시간 동안 사용되지 않은 아이템을 빠르게 찾아낼 수 있도록 한다.

한방향으로만 옷을 걸 수 있는 옷걸이 행거를 생각해봅시다. 가장 오랫동안 입지 않은 옷을 찾기 위해서는, 행거의 반대쪽 끝을 보면 됩니다.

문제 정의

LRUCache 클래스를 구현해봅시다:

  • LRUCache(int capacity) LRU 캐시를 양수capacity 로 초기화합니다.
  • int get(int key) key 가 존재할 경우 key 값을 반환하고, 그렇지 않으면 undefined 를 반환합니다.
  • void set(int key, int value) key 가 존재할 경우 key 값을 업데이트 하고, 그렇지 않으면 key-value 쌍을 캐시에 추가합니다. 만약 이 동작으로 인해 키 개수가 capacity 를 넘는 경우, 가장 오래된 키 값을 제거 합니다.

get()set() 함수는 무조건 평균 O(1) 의 시간 복잡도 내에 실행되어야 합니다.

구현

버전 1: 더블 링크드 리스트 + 해시맵

LRUCache.js 에서 LRUCache 구현체 예시를 확인할 수 있습니다. 예시에서는 (평균적으로) 빠른 O(1) 캐시 아이템 접근을 위해 HashMap 을 사용했고, (평균적으로) 빠른 O(1) 캐시 아이템 수정과 제거를 위해 DoublyLinkedList 를 사용했습니다. (허용된 최대의 캐시 용량을 유지하기 위해)

Linked List

okso.app 으로 만듦

LRU 캐시가 어떻게 작동하는지 더 많은 예시로 확인하고 싶다면 LRUCache.test.js](./test/LRUCache.test.js) 파일을 참고하세요.

버전 2: 정렬된 맵

더블 링크드 리스트로 구현한 첫번째 예시는 어떻게 평균 O(1) 시간 복잡도가 set()get() 으로 나올 수 있는지 학습 목적과 이해를 돕기 위해 좋은 예시입니다.

그러나, 더 쉬운 방법은 자바스크립트의 Map 객체를 사용하는 것입니다. 이 Map 객체는 키-값 쌍과 키를 추가하는 순서 원본 을 지닙니다. 우리는 이걸 아이템을 제거하거나 다시 추가하면서 맵의 "가장 마지막" 동작에서 최근에 사용된 아이템을 유지하기 위해 사용할 수 있습니다. Map 의 시작점에 있는 아이템은 캐시 용량이 넘칠 경우 가장 먼저 제거되는 대상입니다. 아이템의 순서는 map.keys() 와 같은 IterableIterator 을 사용해 확인할 수 있습니다.

해당 구현체는 LRUCacheOnMap.jsLRUCacheOnMap 예시에서 확인할 수 있습니다.

이 LRU 캐시 방식이 어떻게 작동하는지 더 많은 테스트 케이스를 확인하고 싶다면 LRUCacheOnMap.test.js 파일을 참고하세요.

복잡도

평균
공간 O(n)
아이템 찾기 O(1)
아이템 설정하기 O(1)

참조