首页
▼ 算法合集
▼ 加密算法
▼ 凯撒密码
凯撒密码
▼ Hill密码算法
Hill密码算法
▼ 多项式哈希算法
多项式哈希算法
▼ Rail Fence Cipher
Rail Fence Cipher
▼ Graph算法
▼ 关节点
关节点
▼ Bellman-Ford算法
Bellman-Ford算法
▼ 广度优先搜索
广度优先搜索
▼ GraphBridges
桥接模式
▼ 深度优先搜索
深度优先搜索
▼ 检测循环
检测循环
▼ Dijkstra算法
Dijkstra算法
▼ Eulerian Path
欧拉路径
▼ Floyd-Warshall算法
Floyd-Warshall算法
▼ HamiltonianCycle
Hamiltonian Cycle
▼ Kruskal算法
Kruskal算法
▼ Prim算法
Prim算法
▼ 强连通分量
强连通分量
▼ 拓扑排序
拓扑排序
▼ Travelling Salesman Problem
Travelling Salesman
▼ 图像处理算法
▼ Seam Carving算法
内容感知缩放算法
▼ 链表
▼ 反向遍历
反向遍历
▼ GraphTraversal
GraphTraversal
▼ 数学算法
▼ 二进制浮点数
BinaryFloatingPoint
▼ 位操作
位操作算法
▼ 复数
复数
▼ 欧几里得算法
Euclidean Algorithm
▼ Euclidean Distance
欧几里得距离
▼ 阶乘算法
阶乘算法
▼ 快速幂算法
快速幂算法
▼ Fibonacci数列
斐波那契数列
▼ 傅里叶变换
Fourier变换
▼ Horner法
霍纳法则
▼ 整数划分
整数划分
▼ 判断是否为2的幂
判断是否为2的幂
▼ 最小公倍数
最小公倍数
▼ Liu Hui
Liu Hui
▼ 矩阵
Matrix
▼ Pascal三角形
Pascal三角形
▼ Primality Test
素数测试
▼ 质因数
质因数
▼ 弧度计算
弧度计算
▼ 埃拉托色尼筛法
埃拉托色尼筛法
▼ SquareRoot
SquareRoot
▼ MachineLearning
▼ K均值算法
K均值算法
▼ K近邻算法
K近邻算法
▼ 搜索算法
▼ 二分查找算法
二分查找
▼ 插值搜索算法
插值搜索算法
▼ 跳跃搜索算法
跳跃搜索算法
▼ 线性搜索
线性搜索算法
▼ 集合
▼ 笛卡尔积
笛卡尔积
▼ 组合总和
组合总和
▼ 组合算法
组合算法
▼ Fisher-Yates洗牌算法
Fisher-Yates洗牌算法
▼ 背包问题
背包问题
▼ 最长公共子序列
最长公共子序列
▼ 最长递增子序列
最长递增子序列
▼ 最大子数组
最大子数组
▼ 排列组合
排列组合
▼ 幂集
幂集算法
▼ 最短公共超序列
最短公共超序列
▼ Sorting Algorithms
▼ 冒泡排序
冒泡排序
▼ 桶排序算法
桶排序算法
▼ 计数排序算法
计数排序
▼ 堆排序算法
堆排序
▼ 插入排序
插入排序
▼ 归并排序
归并排序
▼ 快速排序算法
快速排序算法
▼ 基数排序
基数排序
▼ 选择排序算法
选择排序算法
▼ 希尔排序
希尔排序
▼ 统计学
▼ 加权随机
加权随机算法
▼ 字符串算法
▼ Hamming距离
Hamming距离
▼ KnuthMorrisPratt算法
Knuth-Morris-Pratt算法
▼ LevenshteinDistance
Levenshtein距离
▼ 最长公共子串
最长公共子串
▼ 回文检测算法
回文检测算法
▼ Rabin-Karp算法
Rabin-Karp算法
▼ 正则表达式匹配
正则表达式匹配
▼ Z算法
Z算法
▼ Tree Data Structure
▼ 广度优先搜索
广度优先搜索
▼ 深度优先搜索
深度优先搜索
▼ 未分类
▼ 最佳买卖股票时机
最佳买卖股票时机
▼ 汉诺塔算法
HanoiTower
▼ 跳跃游戏算法
跳跃游戏
▼ KnightTour
骑士巡逻
▼ N皇后问题
N皇后问题
▼ 雨水收集
雨水收集
▼ 递归楼梯问题
递归楼梯问题
▼ 方阵旋转
方阵旋转
▼ 独特路径
UniquePaths
▼ 数据结构
▼ BloomFilter算法
布隆过滤器
▼ 不相交集数据结构
Disjoint Set
▼ 双向链表
双向链表
▼ Graph
Graph算法
▼ 哈希表
哈希表
▼ Heap数据结构
Heap数据结构
▼ 链表
链表
▼ LRU缓存
LRU缓存
▼ 优先队列
优先队列
▼ 队列
队列
▼ 栈结构
栈结构
▼ Tree Data Structure
树结构
▼ AVL树
AVL树
▼ 二叉搜索树
二叉搜索树
▼ Fenwick树
Fenwick树
▼ 红黑树
红黑树
▼ 线段树
SegmentTree
▼ Trie数据结构
Trie数据结构
哈默尔内方法
在数学中,哈默尔内方法(或称为哈默尔内方案)是一种多项式求值的算法。使用这种方法,只需n
次加法和n
次乘法就可以评估一个多项式。因此,其存储需求是x
的位数n
倍。
哈默尔内方法可以基于以下恒等式:

这个恒等式被称为_哈默尔内规则_。
为了解决上述恒等式的右侧部分,对于给定的x
,我们首先从内部开始迭代多项式,累积每次迭代的值。经过n
次迭代后,n
是多项式的阶数,累积的结果给出了多项式的评估。
使用多项式:
4 * x^4 + 2 * x^3 + 3 * x^2 + x^1 + 3
,传统上在x = 2
处评估它的方法是将其表示为一个数组[3, 1, 3, 2, 4]
,并遍历它以在累加器中保存每次迭代的值,例如acc += pow(x=2, index) * array[index]
。本质上,每个数的幂运算(pow
)操作是n-1
次乘法。所以,在这种情况下,总共会发生14
次操作,包括4
次加法和5
次乘法,以及5
次幂运算(我们假设每个幂是通过重复乘法计算的)。
现在,使用相同场景但采用哈默尔内规则,多项式可以被重写为x * (x * (x * (4 * x + 2) + 3) + 1) + 3
,将其表示为[4, 2, 3, 1, 3]
,可以将第一次迭代保存为acc = arr[0] * (x=2) + arr[1]
,然后完成对acc
的迭代。在相同的场景中使用哈默尔内规则,总共会发生10
次操作,仅包括4
次加法和4
次乘法。
参考文献