首页

▼ 算法合集

▼ 加密算法

▼ 凯撒密码

凯撒密码

▼ Hill密码算法

Hill密码算法

▼ 多项式哈希算法

多项式哈希算法

▼ Rail Fence Cipher

Rail Fence Cipher

▼ Graph算法

▼ 关节点

关节点

▼ Bellman-Ford算法

Bellman-Ford算法

▼ 广度优先搜索

广度优先搜索

▼ GraphBridges

桥接模式

▼ 深度优先搜索

深度优先搜索

▼ 检测循环

检测循环

▼ Dijkstra算法

Dijkstra算法

▼ Eulerian Path

欧拉路径

▼ Floyd-Warshall算法

Floyd-Warshall算法

▼ HamiltonianCycle

Hamiltonian Cycle

▼ Kruskal算法

Kruskal算法

▼ Prim算法

Prim算法

▼ 强连通分量

强连通分量

▼ 拓扑排序

拓扑排序

▼ Travelling Salesman Problem

Travelling Salesman

▼ 图像处理算法

▼ Seam Carving算法

内容感知缩放算法

▼ 链表

▼ 反向遍历

反向遍历

▼ GraphTraversal

GraphTraversal

▼ 数学算法

▼ 二进制浮点数

BinaryFloatingPoint

▼ 位操作

位操作算法

▼ 复数

复数

▼ 欧几里得算法

Euclidean Algorithm

▼ Euclidean Distance

欧几里得距离

▼ 阶乘算法

阶乘算法

▼ 快速幂算法

快速幂算法

▼ Fibonacci数列

斐波那契数列

▼ 傅里叶变换

Fourier变换

▼ Horner法

霍纳法则

▼ 整数划分

整数划分

▼ 判断是否为2的幂

判断是否为2的幂

▼ 最小公倍数

最小公倍数

▼ Liu Hui

Liu Hui

▼ 矩阵

Matrix

▼ Pascal三角形

Pascal三角形

▼ Primality Test

素数测试

▼ 质因数

质因数

▼ 弧度计算

弧度计算

▼ 埃拉托色尼筛法

埃拉托色尼筛法

▼ SquareRoot

SquareRoot

▼ MachineLearning

▼ K均值算法

K均值算法

▼ K近邻算法

K近邻算法

▼ 搜索算法

▼ 二分查找算法

二分查找

▼ 插值搜索算法

插值搜索算法

▼ 跳跃搜索算法

跳跃搜索算法

▼ 线性搜索

线性搜索算法

▼ 集合

▼ 笛卡尔积

笛卡尔积

▼ 组合总和

组合总和

▼ 组合算法

组合算法

▼ Fisher-Yates洗牌算法

Fisher-Yates洗牌算法

▼ 背包问题

背包问题

▼ 最长公共子序列

最长公共子序列

▼ 最长递增子序列

最长递增子序列

▼ 最大子数组

最大子数组

▼ 排列组合

排列组合

▼ 幂集

幂集算法

▼ 最短公共超序列

最短公共超序列

▼ Sorting Algorithms

▼ 冒泡排序

冒泡排序

▼ 桶排序算法

桶排序算法

▼ 计数排序算法

计数排序

▼ 堆排序算法

堆排序

▼ 插入排序

插入排序

▼ 归并排序

归并排序

▼ 快速排序算法

快速排序算法

▼ 基数排序

基数排序

▼ 选择排序算法

选择排序算法

▼ 希尔排序

希尔排序

▼ 统计学

▼ 加权随机

加权随机算法

▼ 字符串算法

▼ Hamming距离

Hamming距离

▼ KnuthMorrisPratt算法

Knuth-Morris-Pratt算法

▼ LevenshteinDistance

Levenshtein距离

▼ 最长公共子串

最长公共子串

▼ 回文检测算法

回文检测算法

▼ Rabin-Karp算法

Rabin-Karp算法

▼ 正则表达式匹配

正则表达式匹配

▼ Z算法

Z算法

▼ Tree Data Structure

▼ 广度优先搜索

广度优先搜索

▼ 深度优先搜索

深度优先搜索

▼ 未分类

▼ 最佳买卖股票时机

最佳买卖股票时机

▼ 汉诺塔算法

HanoiTower

▼ 跳跃游戏算法

跳跃游戏

▼ KnightTour

骑士巡逻

▼ N皇后问题

N皇后问题

▼ 雨水收集

雨水收集

▼ 递归楼梯问题

递归楼梯问题

▼ 方阵旋转

方阵旋转

▼ 独特路径

UniquePaths

▼ 数据结构

▼ BloomFilter算法

布隆过滤器

▼ 不相交集数据结构

Disjoint Set

▼ 双向链表

双向链表

▼ Graph

Graph算法

▼ 哈希表

哈希表

▼ Heap数据结构

Heap数据结构

▼ 链表

链表

▼ LRU缓存

LRU缓存

▼ 优先队列

优先队列

▼ 队列

队列

▼ 栈结构

栈结构

▼ Tree Data Structure

树结构

▼ AVL树

AVL树

▼ 二叉搜索树

二叉搜索树

▼ Fenwick树

Fenwick树

▼ 红黑树

红黑树

▼ 线段树

SegmentTree

▼ Trie数据结构

Trie数据结构

唯一路径问题

一个机器人位于一个 m x n 网格的左上角(如下图中的 'Start')。

机器人在任何时间点只能向下或向右移动。机器人正试图到达网格的右下角(如下图中的 'Finish')。

有多少种可能的唯一路径?

唯一路径

示例

示例 #1

输入:m = 3, n = 2
输出:3
解释:
从左上角开始,有三种不同的方式到达右下角:
1. 向右 -> 向右 -> 向下
2. 向右 -> 向下 -> 向右
3. 向下 -> 向右 -> 向右

示例 #2

输入:m = 7, n = 3
输出:28

算法

回溯

首先想到的可能是我们需要构建一个决策树,其中 D 表示向下移动,R 表示向右移动。例如在猪猡的情况中 width = 3height = 2 我们将会有以下决策树:

                START
                /   \
               D     R
             /     /   \
           R      D      R
         /      /         \
        R      R            D

       END    END          END

我们可以看到这里有三个唯一的分支,这就是我们的问题的答案。

时间复杂度O(2 ^ n) - 大致在最坏情况下,对于大小为 n 的正方形网格。

辅助空间复杂度O(m + n) - 因为我们需要存储当前路径及其位置。

动态规划

让我们将 BOARD[i][j] 视为我们的子问题。

由于我们只能向右或向下移动,我们可以说到达当前单元格的唯一路径数量是上方单元格和左侧单元格的唯一路径数量的和。

BOARD[i][j] = BOARD[i - 1][j] + BOARD[i][j - 1]; // 由于我们只能向下或向右移动。

基础情况是:

BOARD[0][any] = 1; // 只有一种方法到达任何顶部的插槽。
BOARD[any][0] = 1; // 只有一种方法到达最左边一列的任何插槽。

对于 3 x 2 的棋盘,我们的动态规划矩阵将如下所示:

0 1 1
0 0 1 1
1 1 2 3

每个单元格包含到达它的唯一路径数量。我们需要底部右侧的单元格,其数量为 3

时间复杂度O(m * n) - 因为我们正在遍历 DP 矩阵的每个单元格。

辅助空间复杂度O(m * n) - 因为我们需要具有 DP 矩阵。

帕斯卡三角形式

这个问题实际上是帕斯卡三角形的另一种形式。

这个矩形的角落位于 m + n - 2 行,以及帕斯卡三角形的 min(m, n) - 1 位置。

参考资料