在 GitHub 上编辑
scikit-learn
DVCLive 可以为您的 Scikit-learn 项目添加实验跟踪功能。
用法
DVCLive 提供了内置函数来生成 scikit-learn 图表,请参见 Live.log_sklearn_plot()
。
以下代码片段来自上述链接的 Colab 笔记本:
from dvclive import Live
...
with Live() as live:
live.log_param("n_estimators", n_estimators)
clf = RandomForestClassifier(n_estimators=n_estimators)
clf.fit(X_train, y_train)
y_train_pred = clf.predict(X_train)
live.log_metric("train/f1", f1_score(y_train, y_train_pred, average="weighted"), plot=False)
live.log_sklearn_plot(
"confusion_matrix", y_train, y_train_pred, name="train/confusion_matrix",
title="Train Confusion Matrix")
y_test_pred = clf.predict(X_test)
live.log_metric("test/f1", f1_score(y_test, y_test_pred, average="weighted"), plot=False)
live.log_sklearn_plot(
"confusion_matrix", y_test, y_test_pred, name="test/confusion_matrix",
title="Test Confusion Matrix")